The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Clique irreducibility of some iterative classes of graphs

Aparna Lakshmanan S.A. Vijayakumar — 2008

Discussiones Mathematicae Graph Theory

In this paper, two notions, the clique irreducibility and clique vertex irreducibility are discussed. A graph G is clique irreducible if every clique in G of size at least two, has an edge which does not lie in any other clique of G and it is clique vertex irreducible if every clique in G has a vertex which does not lie in any other clique of G. It is proved that L(G) is clique irreducible if and only if every triangle in G has a vertex of degree two. The conditions for the iterations of line graph,...

Gallai and anti-Gallai graphs of a graph

Aparna Lakshmanan S.S. B. RaoA. Vijayakumar — 2007

Mathematica Bohemica

The paper deals with graph operators—the Gallai graphs and the anti-Gallai graphs. We prove the existence of a finite family of forbidden subgraphs for the Gallai graphs and the anti-Gallai graphs to be H -free for any finite graph H . The case of complement reducible graphs—cographs is discussed in detail. Some relations between the chromatic number, the radius and the diameter of a graph and its Gallai and anti-Gallai graphs are also obtained.

Page 1

Download Results (CSV)