The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
For a class of infinite-dimensional minimization problems with nonlinear equality constraints, an iterative algorithm for finding global solutions is suggested. A key assumption is the convexity of the ''epigraph'', a set in the product of the image spaces of the constraint and objective functions. A convexification method involving randomization is used. The algorithm is based on the extremal shift control principle due to N.N. Krasovskii. An application to a problem of optimal control for a bilinear...
Download Results (CSV)