The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Structural change for the Koyck Distributed Lag Model is analyzed through the Bayesian approach. The posterior distribution of the break point is derived with the use of the normal-gamma prior density and the break point, ν, is estimated by the value that attains the Highest Posterior Probability (HPP). Simulation study is done using R.
Given the parameter values ϕ = 0.2 and λ = 0.3, the full detection of the structural change when σ² = 1 is generally attained at ν + 1. The after...
Download Results (CSV)