The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The paper contains some sufficient conditions for Marczewski-Burstin representability of an algebra 𝓐 of sets which is isomorphic to 𝓟(X) for some X. We characterize those algebras of sets which are inner MB-representable and isomorphic to a power set. We consider connections between inner MB-representability and hull property of an algebra isomorphic to 𝓟 (X) and completeness of an associated quotient algebra. An example of an infinite universally MB-representable algebra is given.
For a sequence x ∈ l 10, one can consider the achievement set E(x) of all subsums of series Σn=1∞ x(n). It is known that E(x) has one of the following structures: a finite union of closed intervals, a set homeomorphic to the Cantor set, a set homeomorphic to the set T of subsums of Σn=1∞ x(n) where c(2n − 1) = 3/4n and c(2n) = 2/4n (Cantorval). Based on ideas of Jones and Velleman [Jones R., Achievement sets of sequences, Amer. Math. Monthly, 2011, 118(6), 508–521] and Guthrie and Nymann [Guthrie...
We construct algebras of sets which are not MB-representable. The existence of such algebras was previously known under additional set-theoretic assumptions. On the other hand, we prove that every Boolean algebra is isomorphic to an MB-representable algebra of sets.
Let T 1 and T 2 be topologies defined on the same set X and let us say that (X, T 1) and (X, T 2) are similar if the families of sets which have nonempty interior with respect to T 1 and T 2 coincide. The aim of the paper is to study how similar topologies are related with each other.
For a sequence x ∈ ℓ₁∖c₀₀, one can consider the set E(x) of all subsums of the series . Guthrie and Nymann proved that E(x) is one of the following types of sets: () a finite union of closed intervals; () homeomorphic to the Cantor set; homeomorphic to the set T of subsums of where b(2n-1) = 3/4ⁿ and b(2n) = 2/4ⁿ. Denote by ℐ, and the sets of all sequences x ∈ ℓ₁∖c₀₀ such that E(x) has the property (ℐ), () and ( ), respectively. We show that ℐ and are strongly -algebrable and is -lineable. We...
Download Results (CSV)