On the lattice of polynomials with integer coefficients: the covering radius in
The paper deals with the approximation by polynomials with integer coefficients in , 1 ≤ p ≤ ∞. Let be the space of polynomials of degree ≤ n which are divisible by the polynomial , r ≥ 0, and let be the set of polynomials with integer coefficients. Let be the maximal distance of elements of from in . We give rather precise quantitative estimates of for n ≳ 6r. Then we obtain similar, somewhat less precise, estimates of for p ≠ 2. It follows that as n → ∞. The results partially...