Compact group extensions of 2-fold simple actions of locally compact second countable amenable groups are considered. It is shown what the elements of the centralizer of such a system look like. It is also proved that each factor of such a system is determined by a compact subgroup in the centralizer of a normal factor.
The centralizer of a semisimple isometric extension of a minimal flow is described.
The main results of this paper are: 1. No topologically transitive cocycle -extension of minimal rotation on the unit circle by a continuous real-valued bounded variation ℤ-cocycle admits minimal subsets. 2. A minimal rotation on a compact metric monothetic group does not admit a topologically transitive real-valued cocycle if and only if the group is finite.
We introduce the concept of an extreme relation for a topological flow as an analogue of the extreme measurable partition for a measure-preserving transformation considered by Rokhlin and Sinai, and we show that every topological flow has such a relation for any invariant measure. From this result, it follows, among other things, that any deterministic flow has zero topological entropy and any flow which is a K-system with respect to an invariant measure with full support is a topological K-flow....
Download Results (CSV)