The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove that a k-uniform self-complementary hypergraph of order n exists, if and only if is even.
Let us call a G (H,k) graph vertex stable if it contains a subgraph H ever after removing any of its k vertices. By Q(H,k) we will denote the minimum size of an (H,k) vertex stable graph. In this paper, we are interested in finding Q(₃,k), Q(₄,k), and Q(Kₛ,k).
Download Results (CSV)