An application of Lie groupoids to a rigidity problem of 2-step nilmanifolds
We study a problem of isometric compact 2-step nilmanifolds using some information on their geodesic flows, where is a simply connected 2-step nilpotent Lie group with a left invariant metric and is a cocompact discrete subgroup of isometries of . Among various works concerning this problem, we consider the algebraic aspect of it. In fact, isometry groups of simply connected Riemannian manifolds can be characterized in a purely algebraic way, namely by normalizers. So, suitable factorization...