The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider one-dimensional stochastic differential equations in the particular case of diffusion coefficient functions of the form , . In that case, we study the rate of convergence of a symmetrized version of the Euler scheme. This symmetrized version is easy to simulate on a computer. We prove its strong convergence and obtain the same rate of convergence as when the coefficients are Lipschitz.
We consider one-dimensional stochastic differential equations
in the particular case of diffusion coefficient functions of the form
|, ∈ [1/2,1). In that case, we study the rate of convergence of a
symmetrized version of the Euler scheme. This symmetrized version is
easy to simulate on a computer.
We prove its strong convergence and obtain the same rate of
convergence as when the coefficients are Lipschitz.
Download Results (CSV)