The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
2000 Mathematics Subject Classification: 16R10, 16R20, 16R50
The algebra Mn(K) of the matrices n × n over a field K can be regarded as a Z-graded algebra. In this paper, it is proved that if K is an
infinite field, all the Z-graded polynomial identities of Mn(K) follow from the identities:
x = 0, |α(x)| ≥ n,
xy = yx, α(x) = α(y) = 0,
xyz = zyx, α(x) = −α(y) = α(z ),
where α is the degree of the corresponding variable.
This is a generalization of a result of Vasilovsky about the Z-graded...
Download Results (CSV)