Pseudo-bosons from Landau levels.
We give here a survey of some recent results on applications of topological quasi *-algebras to the analysis of the time evolution of quantum systems with infinitely many degrees of freedom.
Non-commutative -spaces are shown to constitute examples of a class of Banach quasi *-algebras called CQ*-algebras. For p ≥ 2 they are also proved to possess a sufficient family of bounded positive sesquilinear forms with certain invariance properties. CQ*-algebras of measurable operators over a finite von Neumann algebra are also constructed and it is proven that any abstract CQ*-algebra (,₀) with a sufficient family of bounded positive tracial sesquilinear forms can be represented as a CQ*-algebra...
Page 1