The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The representation of Boolean functions by their algebraic normal
forms (ANFs) is very important for cryptography, coding theory and
other scientific areas. The ANFs are used in computing the algebraic degree
of S-boxes, some other cryptographic criteria and parameters of errorcorrecting
codes. Their applications require these criteria and parameters to
be computed by fast algorithms. Hence the corresponding ANFs should also
be obtained by fast algorithms. Here we continue our previous work on fast
computing...
The problem of efficient computing of the affine vector operations (addition of two vectors and multiplication of a vector by a scalar over GF (q)), and also the weight of a given vector, is important for many
problems in coding theory, cryptography, VLSI technology etc. In this paper
we propose a new way of representing vectors over GF (3) and GF (4) and
we describe an efficient performance of these affine operations. Computing
weights of binary vectors is also discussed.
Download Results (CSV)