Let be an -algebraic semisimple group, an algebraic -subgroup, and a lattice in . Partially answering a question posed by Hillel Furstenberg in 1972, we prove that if the action of on is minimal, then it is uniquely ergodic. Our proof uses in an essential way Marina Ratner’s classification of probability measures on invariant under unipotent elements, and the study of “tubes” in .
We study infinite translation surfaces which are -covers of compact translation surfaces. We obtain conditions ensuring that such surfaces have Veech groups which are Fuchsian of the first kind and give a necessary and sufficient condition for recurrence of their straight-line flows. Extending results of Hubert and Schmithüsen, we provide examples of infinite non-arithmetic lattice surfaces, as well as surfaces with infinitely generated Veech groups.
Download Results (CSV)