Quasilinear elliptic problems with nonstandard growth.
We establish the existence of a T-p(x)-solution for the p(x)-elliptic problem in Ω, where Ω is a bounded open domain of , N ≥ 2 and is a Carathéodory function satisfying the natural growth condition and the coercivity condition, but with only a weak monotonicity condition. The right hand side f lies in L¹(Ω) and F belongs to .
We study a class of anisotropic nonlinear elliptic equations with variable exponent p⃗(·) growth. We obtain the existence of entropy solutions by using the truncation technique and some a priori estimates.
Page 1