Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Jumps of ternary cyclotomic coefficients

Bartłomiej Bzdęga — 2014

Acta Arithmetica

It is known that two consecutive coefficients of a ternary cyclotomic polynomial Φ p q r ( x ) = k a p q r ( k ) x k differ by at most one. We characterize all k such that | a p q r ( k ) - a p q r ( k - 1 ) | = 1 . We use this to prove that the number of nonzero coefficients of the nth ternary cyclotomic polynomial is greater than n 1 / 3 .

On a generalization of the Beiter Conjecture

Bartłomiej Bzdęga — 2016

Acta Arithmetica

We prove that for every ε > 0 and every nonnegative integer w there exist primes p 1 , . . . , p w such that for n = p 1 . . . p w the height of the cyclotomic polynomial Φ n is at least ( 1 - ε ) c w M n , where M n = i = 1 w - 2 p i 2 w - 1 - i - 1 and c w is a constant depending only on w; furthermore l i m w c w 2 - w 0 . 71 . In our construction we can have p i > h ( p 1 . . . p i - 1 ) for all i = 1,...,w and any function h: ℝ₊ → ℝ₊.

Page 1

Download Results (CSV)