The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove a Hardy inequality for the fractional Laplacian on the interval with the optimal constant and additional lower order term. As a consequence, we also obtain a fractional Hardy inequality with the best constant and an extra lower order term for general domains, following the method of M. Loss and C. Sloane [J. Funct. Anal. 259 (2010)].
We prove norm inequalities between Lorentz and Besov-Lipschitz spaces of fractional smoothness.
For domains we give exact asymptotics near the domain’s boundary for the Green function and Martin kernel of the rotation invariant α-stable Lévy process. We also obtain a relative Fatou theorem for harmonic functions of the stable process.
We prove a fractional version of the Hardy-Sobolev-Maz’ya inequality for arbitrary domains and norms with p ≥ 2. This inequality combines the fractional Sobolev and the fractional Hardy inequality into a single inequality, while keeping the sharp constant in the Hardy inequality.
Download Results (CSV)