The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove the Lukacs characterization of the Wishart distribution on non-octonion symmetric cones of rank greater than 2. We weaken the smoothness assumptions in the version of the Lukacs theorem of [Bobecka-Wesołowski, Studia Math. 152 (2002), 147-160]. The main tool is a new solution of the Olkin-Baker functional equation on symmetric cones, under the assumption of continuity of respective functions. It was possible thanks to the use of Gleason's theorem.
Download Results (CSV)