The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Existence of renormalized solutions for parabolic equations without the sign condition and with three unbounded nonlinearities

Y. AkdimJ. BennounaM. MekkourH. Redwane — 2012

Applicationes Mathematicae

We study the problem ∂b(x,u)/∂t - div(a(x,t,u,Du)) + H(x,t,u,Du) = μ in Q = Ω×(0,T), b ( x , u ) | t = 0 = b ( x , u ) in Ω, u = 0 in ∂Ω × (0,T). The main contribution of our work is to prove the existence of a renormalized solution without the sign condition or the coercivity condition on H(x,t,u,Du). The critical growth condition on H is only with respect to Du and not with respect to u. The datum μ is assumed to be in L ¹ ( Q ) + L p ' ( 0 , T ; W - 1 , p ' ( Ω ) ) and b(x,u₀) ∈ L¹(Ω).

Page 1

Download Results (CSV)