Slowdown estimates for ballistic random walk in random environment
We consider models of random walk in uniformly elliptic i.i.d. random environment in dimension greater than or equal to 4, satisfying a condition slightly weaker than the ballisticity condition . We show that for every and large enough, the annealed probability of linear slowdown is bounded from above by . This bound almost matches the known lower bound of , and significantly improves previously known upper bounds. As a corollary we provide almost sharp estimates for the quenched probability...