Norms of hypercyclic sequences.
We prove some conditions on a complex sequence for the existence of universal functions with respect to sequences of certain derivative and antiderivative operators related to it. These operators are defined on the space of holomorphic functions in a complex domain. Conditions for the equicontinuity of those sequences are also studied. The conditions depend upon the size of the domain.
We furnish several necessary and sufficient conditions for the following property: For a topological space X, a continuous selfmapping S of X and a family τ of continuous selfmappings of X, the image under S of every τ-universal element is also τ-universal. An application in operator theory, where we extend results of Bourdon, Herrero, Bes, Herzog and Lemmert, is given. In particular, it is proved that every hypercyclic operator on a real or complex Banach space has a dense invariant linear manifold...
We show that if (Tₙ) is a hypercyclic sequence of linear operators on a locally convex space and (Sₙ) is a sequence of linear operators such that the image of each orbit under every linear functional is non-dense then the sequence (Tₙ + Sₙ) has dense range. Furthermore, it is proved that if T,S are commuting linear operators in such a way that T is hypercyclic and all orbits under S satisfy the above non-denseness property then T - S has dense range. Corresponding statements for operators and sequences...
We introduce the concept of disjoint hypercyclic operators. These are operators performing the approximation of any given vectors with a common subsequence of iterates applied on a common vector. The notion is extended to sequences of operators, and applied to composition operators and differential operators on spaces of analytic functions.
We provide sharp conditions on a measure μ defined on a measurable space X guaranteeing that the family of functions in the Lebesgue space (p ≥ 1) which are not q-integrable for any q > p (or any q < p) contains large subspaces of (without zero). This improves recent results due to Aron, García, Muñoz, Palmberg, Pérez, Puglisi and Seoane. It is also shown that many non-q-integrable functions can even be obtained on any nonempty open subset of X, assuming that X is a topological space and...
In this paper, a criterion for the existence of large linear algebras consisting, except for zero, of one-to-one operators on an infinite dimensional Banach space is provided. As a consequence, it is shown that every separable infinite dimensional Banach space supports a commutative infinitely generated free linear algebra of operators all of whose nonzero members are one-to-one. In certain cases, the assertion holds for nonseparable Banach spaces.
Page 1