Attractors which are Homeomorphic to compact Abelian Groups.
We show that the Vietoris system of a space is isomorphic to a strong expansion of that space in the Steenrod homotopy category, and from this we derive a simple description of strong homology. It is proved that in ZFC strong homology does not have compact supports, and that enforcing compact supports by taking limits leads to a homology functor that does not factor over the strong shape category. For compact Hausdorff spaces strong homology is proved to be isomorphic to Massey's homology.
We prove that Alexander-Spanier cohomology with coefficients in a topologicalAbelian group G is isomorphic to the group of isomorphism classes of principal bundles with certain Abelian structure groups. The result holds if either X is a CW-space and G arbitrary or if X is metrizable or compact Hausdorff and G an ANR.
Page 1