The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Inequalities between the sum of powers and the exponential of sum of positive and commuting selfadjoint operators

Berrabah BendoukhaHafida Bendahmane — 2011

Archivum Mathematicum

Let ( ) be the set of all bounded linear operators acting in Hilbert space and + ( ) the set of all positive selfadjoint elements of ( ) . The aim of this paper is to prove that for every finite sequence ( A i ) i = 1 n of selfadjoint, commuting elements of + ( ) and every natural number p 1 , the inequality e p p p i = 1 n A i p exp i = 1 n A i , holds.

Page 1

Download Results (CSV)