The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 10 of 10

Showing per page

Order by Relevance | Title | Year of publication

C*-seminorms

Bertram Yood — 1996

Studia Mathematica

A necessary and sufficient condition is given for a*-algebra with identity to have a unique maximal C*-seminorm. This generalizes the result, due to Bonsall, that a Banach *-algebra with identity has such a*-seminorm.

On the non-existence of norms for some algebras of functions

Bertram Yood — 1994

Studia Mathematica

Let C(Ω) be the algebra of all complex-valued continuous functions on a topological space Ω where C(Ω) contains unbounded functions. First it is shown that C(Ω) cannot have a Banach algebra norm. Then it is shown that, for certain Ω, C(Ω) cannot possess an (incomplete) normed algebra norm. In particular, this is so for Ω = n where ℝ is the reals.

Transitivity for linear operators on a Banach space

Bertram Yood — 1999

Studia Mathematica

Let G be the multiplicative group of invertible elements of E(X), the algebra of all bounded linear operators on a Banach space X. In 1945 Mackey showed that if x 1 , , x n and y 1 , , y n are any two sets of linearly independent elements of X with the same number of items, then there exists T ∈ G so that T ( x k ) = y k , k = 1 , , n . We prove that some proper multiplicative subgroups of G have this property.

Centralizers for subsets of normed algebras

Bertram Yood — 2000

Studia Mathematica

Let G be the set of invertible elements of a normed algebra A with an identity. For some but not all subsets H of G we have the following dichotomy. For x ∈ A either c x c - 1 = x for all c ∈ H or s u p c x c - 1 : c H = . In that case the set of x ∈ A for which the sup is finite is the centralizer of H.

Ascent, descent and roots of Fredholm operators

Bertram Yood — 2003

Studia Mathematica

Let T be a Fredholm operator on a Banach space. Say T is rootless if there is no bounded linear operator S and no positive integer m ≥ 2 such that S m = T . Criteria and examples of rootlessness are given. This leads to a study of ascent and descent whether finite or infinite for T with examples having infinite ascent and descent.

Commutators in Banach *-algebras

Bertram Yood — 2008

Studia Mathematica

The set of commutators in a Banach *-algebra A, with continuous involution, is examined. Applications are made to the case where A = B(ℓ₂), the algebra of all bounded linear operators on ℓ₂.

Page 1

Download Results (CSV)