We study boundedness in Orlicz norms of convolution operators with integrable kernels satisfying a generalized Lipschitz condition with respect to normal quasi-distances of ℝⁿ and continuity moduli given by growth functions.
The classical self-similar fractals can be obtained as fixed points of the iteration technique introduced by Hutchinson. The well known results of Mosco show that typically the limit fractal equipped with the invariant measure is a (normal) space of homogeneous type. But the doubling property along this iteration is generally not preserved even when the starting point, and of course the limit point, both have the doubling property. We prove that the elements of Hutchinson orbits possess the doubling...
Download Results (CSV)