The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We show that, given any n and α, any embedding of any sufficiently large complete graph in ℝ³ contains an oriented link with components Q₁, ..., Qₙ such that for every i ≠ j, and , where denotes the second coefficient of the Conway polynomial of .
We characterize which automorphisms of an arbitrary complete bipartite graph can be induced by a homeomorphism of some embedding of the graph in S³.
Download Results (CSV)