The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
If E is an elliptic curve defined over a quadratic field K, and the j-invariant of E is not 0 or 1728, then has infinite rank. If E is an elliptic curve in Legendre form, y² = x(x-1)(x-λ), where ℚ(λ) is a cubic field, then has infinite rank. If λ ∈ K has a minimal polynomial P(x) of degree 4 and v² = P(u) is an elliptic curve of positive rank over ℚ, we prove that y² = x(x-1)(x-λ) has infinite rank over .
For a square-free positive integer N, we study the normalizer of ΓΔ(N) in PSL2(ℝ) and investigate the group structure of its quotient by ΓΔ(N) under certain conditions.
Download Results (CSV)