Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

The Hurewicz covering property and slaloms in the Baire space

Boaz Tsaban — 2004

Fundamenta Mathematicae

According to a result of Kočinac and Scheepers, the Hurewicz covering property is equivalent to a somewhat simpler selection property: For each sequence of large open covers of the space one can choose finitely many elements from each cover to obtain a groupable cover of the space. We simplify the characterization further by omitting the need to consider sequences of covers: A set of reals X has the Hurewicz property if, and only if, each large open cover of X contains a groupable subcover. This...

Arhangel'skiĭ sheaf amalgamations in topological groups

Boaz TsabanLyubomyr Zdomskyy — 2016

Fundamenta Mathematicae

We consider amalgamation properties of convergent sequences in topological groups and topological vector spaces. The main result of this paper is that, for arbitrary topological groups, Nyikos’s property α 1 . 5 is equivalent to Arhangel’skiĭ’s formally stronger property α₁. This result solves a problem of Shakhmatov (2002), and its proof uses a new perturbation argument. We also prove that there is a topological space X such that the space C p ( X ) of continuous real-valued functions on X with the topology...

Hereditarily Hurewicz spaces and Arhangel'skii sheaf amalgamations

Boaz TsabanLubomyr Zdomsky — 2012

Journal of the European Mathematical Society

A classical theorem of Hurewicz characterizes spaces with the Hurewicz covering property as those having bounded continuous images in the Baire space. We give a similar characterization for spaces X which have the Hurewicz property hereditarily. We proceed to consider the class of Arhangel’skii α 1 spaces, for which every sheaf at a point can be amalgamated in a natural way. Let C p ( X ) denote the space of continuous real-valued functions on X with the topology of pointwise convergence. Our main result...

The linear refinement number and selection theory

Michał MachuraSaharon ShelahBoaz Tsaban — 2016

Fundamenta Mathematicae

The linear refinement number is the minimal cardinality of a centered family in [ ω ] ω such that no linearly ordered set in ( [ ω ] ω , * ) refines this family. The linear excluded middle number is a variation of . We show that these numbers estimate the critical cardinalities of a number of selective covering properties. We compare these numbers to the classical combinatorial cardinal characteristics of the continuum. We prove that = = in all models where the continuum is at most ℵ₂, and that the cofinality of is...

Page 1

Download Results (CSV)