The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Irredundant Decomposition of Algebras into One-Dimensional Factors

Bogdan Staruch — 2016

Bulletin of the Section of Logic

We introduce a notion of dimension of an algebraic lattice and, treating such a lattice as the congruence lattice of an algebra, we introduce the dimension of an algebra, too. We define a star-product as a special kind of subdirect product. We obtain the star-decomposition of algebras into one-dimensional factors, which generalizes the known decomposition theorems e.g. for Abelian groups, linear spaces, Boolean algebras.

Decomposition of Congruence Modular Algebras into Atomic, Atomless Locally Uniform and Anti-Uniform Parts

Bogdan StaruchBożena Staruch — 2016

Bulletin of the Section of Logic

We describe here a special subdirect decomposition of algebras with modular congruence lattice. Such a decomposition (called a star-decomposition) is based on the properties of the congruence lattices of algebras. We consider four properties of lattices: atomic, atomless, locally uniform and anti-uniform. In effect, we describe a star-decomposition of a given algebra with modular congruence lattice into two or three parts associated to these properties.

Page 1

Download Results (CSV)