The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
CONTENTS Introduction.............................................................51. Notation, preliminaries, main definitions and solution of problem (D)...................6 1.1. Notation............................................................6 1.2. Preliminaries.......................................................7 1.3. Main definitions....................................................8 1.4. Problem (D).........................................................82. Examples of...
La presente Nota concerne la convergenza delle serie di Fourier di funzioni q.p. a valori in uno spazio di Banach. Si assegna una condizione necessaria e sufficiente perché una serie debolmente incondizionatamente convergente lo sia fortemente. Si dimostra inoltre che in certi spazi di Banach (, , ) se i coefficienti di Fourier sono positivi, allora la serie di Fourier è fortemente incondizionatamente convergente.
Let J be an abelian topological semigroup and C a subset of a Banach space X. Let L(X) be the space of bounded linear operators on X and Lip(C) the space of Lipschitz functions ⨍: C → C. We exhibit a large class of semigroups J for which every weakly continuous semigroup homomorphism T: J → L(X) is necessarily strongly continuous. Similar results are obtained for weakly continuous homomorphisms T: J → Lip(C) and for strongly measurable homomorphisms T: J → L(X).
Download Results (CSV)