The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Foreman (2013) proved a Duality Theorem which gives an algebraic characterization of certain ideal quotients in generic extensions. As an application he proved that generic supercompactness of ω₁ is preserved by any proper forcing. We generalize portions of Foreman's Duality Theorem to the context of generic extender embeddings and ideal extenders (as introduced by Claverie (2010)). As an application we prove that if ω₁ is generically strong, then it remains so after adding any number of Cohen subsets...
Suppose that κ is λ-supercompact witnessed by an elementary embedding j: V → M with critical point κ, and further suppose that F is a function from the class of regular cardinals to the class of cardinals satisfying the requirements of Easton’s theorem: (1) ∀α α < cf(F(α)), and (2) α < β ⇒ F(α) ≤ F(β). We address the question: assuming GCH, what additional assumptions are necessary on j and F if one wants to be able to force the continuum function to agree with F globally, while preserving...
Download Results (CSV)