Squared cycles in monomial relations algebras
Let be an algebraically closed field. Consider a finite dimensional monomial relations algebra of finite global dimension, where Γ is a quiver and I an admissible ideal generated by a set of paths from the path algebra . There are many modules over Λ which may be represented graphically by a tree with respect to a top element, of which the indecomposable projectives are the most natural example. These trees possess branches which correspond to right subpaths of cycles in the quiver. A pattern...