Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

Convergence in the generalized sense relative to Banach algebras of operators and in LMC-algebras

Bruce Barnes — 1995

Studia Mathematica

The notion of convergence in the generalized sense of a sequence of closed operators is generalized to the situation where the closed operators involved are affiliated with a Banach algebra of operators. Also, the concept of convergence in the generalized sense is extended to the context of a LMC-algebra, where it applies to the spectral theory of the algebra.

Perturbation theory relative to a Banach algebra of operators

Bruce Barnes — 1993

Studia Mathematica

Let ℬ be a Banach algebra of bounded linear operators on a Banach space X. Let S be a closed linear operator in X, and let R be a linear operator in X. In this paper the spectral and Fredholm theory relative to ℬ of the perturbed operator S + R is developed. In particular, the situation where R is S-inessential relative to ℬ is studied. Several examples are given to illustrate the usefulness of these concepts.

Closed operators affiliated with a Banach algebra of operators

Bruce Barnes — 1992

Studia Mathematica

Let ℬ be a Banach algebra of bounded linear operators on a Banach space X. If S is a closed operator in X such that (λ - S)^{-1} ∈ ℬ for some number λ, then S is affiliated with ℬ. The object of this paper is to study the spectral theory and Fredholm theory relative to ℬ of an operator which is affiliated with ℬ. Also, applications are given to semigroups of operators which are contained in ℬ.

Linear inessential operators and generalized inverses

Bruce A. Barnes — 2009

Commentationes Mathematicae Universitatis Carolinae

The space of inessential bounded linear operators from one Banach space X into another Y is introduced. This space, I ( X , Y ) , is a subspace of B ( X , Y ) which generalizes Kleinecke’s ideal of inessential operators. For certain subspaces W of I ( X , Y ) , it is shown that when T B ( X , Y ) has a generalized inverse modulo W , then there exists a projection P B ( X ) such that T ( I - P ) has a generalized inverse and T P W .

Diameter-preserving maps on various classes of function spaces

Bruce A. BarnesAshoke K. Roy — 2002

Studia Mathematica

Under some mild assumptions, non-linear diameter-preserving bijections between (vector-valued) function spaces are characterized with the help of a well-known theorem of Ulam and Mazur. A necessary and sufficient condition for the existence of a diameter-preserving bijection between function spaces in the complex scalar case is derived, and a complete description of such maps is given in several important cases.

Page 1

Download Results (CSV)