In this paper, we introduce a new kind of rings that behave like semicommutative rings, but satisfy yet more known results. This kind of rings is called -semicommutative. We prove that a ring is -semicommutative if and only if is -semicommutative if and only if is -semicommutative. Also, if is -semicommutative, then is -semicommutative. The converse holds provided that is nilpotent and is power serieswise Armendariz. For each positive integer , is -semicommutative if and...
In this paper, we introduce a subclass of strongly clean rings. Let be a ring with identity, be the Jacobson radical of , and let denote the set of all elements of which are nilpotent in . An element is called provided that there exists an idempotent such that and or is an element of . A ring is said to be in case every element in is very -clean. We prove that every very -clean ring is strongly -rad clean and has stable range one. It is shown that for a commutative...
Download Results (CSV)