The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 21

Showing per page

Order by Relevance | Title | Year of publication

Multisymplectic forms of degree three in dimension seven

Bureš, JarolímVanžura, Jiří — 2003

Proceedings of the 22nd Winter School "Geometry and Physics"

A multisymplectic 3-structure on an n -dimensional manifold M is given by a closed smooth 3-form ω of maximal rank on M which is of the same algebraic type at each point of M , i.e. they belong to the same orbit under the action of the group G L ( n , ) . This means that for each point x M the form ω x is isomorphic to a chosen canonical 3-form on n . [Linear Multilinear Algebra 10, 183–204 (1981; Zbl 0464.15001)] and [Linear Multilinear Algebra 13, 3–39 (1983; Zbl 0515.15011)] obtained the classification of 3-forms...

Dirac operators on hypersurfaces

Jarolím Bureš — 1993

Commentationes Mathematicae Universitatis Carolinae

In this paper some relation among the Dirac operator on a Riemannian spin-manifold N , its projection on some embedded hypersurface M and the Dirac operator on M with respect to the induced (called standard) spin structure are given.

Special invariant operators I

Jarolím Bureš — 1996

Commentationes Mathematicae Universitatis Carolinae

The aim of the first part of a series of papers is to give a description of invariant differential operators on manifolds with an almost Hermitian symmetric structure of the type G / B which are defined on bundles associated to the reducible but undecomposable representation of the parabolic subgroup B of the Lie group G . One example of an operator of this type is the Penrose’s local twistor transport. In this part general theory is presented, and conformally invariant operators are studied in more...

Page 1 Next

Download Results (CSV)