The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let τ be the first hitting time of the point 1 by the geometric Brownian motion X(t) = x exp(B(t) - 2μt) with drift μ ≥ 0 starting from x > 1. Here B(t) is the Brownian motion starting from 0 with EB²(t) = 2t. We provide an integral formula for the density function of the stopped exponential functional and determine its asymptotic behaviour at infinity. Although we basically rely on methods developed in [BGS], the present paper covers the case of arbitrary drifts μ ≥ 0 and provides a significant...
Download Results (CSV)