Let p be a prime number and X a simply connected Hausdorff space equipped with a free -action generated by . Let be a homeomorphism generating a free -action on the (2n-1)-sphere, whose orbit space is some lens space. We prove that, under some homotopy conditions on X, there exists an equivariant map . As applications, we derive new versions of generalized Lusternik-Schnirelmann and Borsuk-Ulam theorems.
Let N be a closed orientable n-manifold, n ≥ 3, and K a compact non-empty subset. We prove that the existence of a transversally orientable codimension one foliation on N∖K with leaves homeomorphic to , in the relative topology, implies that K must be connected. If in addition one imposes some restrictions on the homology of K, then N must be a homotopy sphere. Next we consider C² actions of a Lie group diffeomorphic to on N and obtain our main result: if K, the set of singular points of the...
Download Results (CSV)