The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Net (X,ℱ,ν) be a σ-finite measure space. Associated with k Lamperti operators on , , and with , we define the ergodic Cesàro-α̅ averages
.
For these averages we prove the almost everywhere convergence on X and the convergence in the norm, when independently, for all with p > 1/α⁎ where . In the limit case p = 1/α⁎, we prove that the averages converge almost everywhere on X for all f in the Orlicz-Lorentz space with . To obtain the result in the limit case we need to study...
Download Results (CSV)