The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Extension of smooth functions in infinite dimensions, I: unions of convex sets

C. J. Atkin — 2001

Studia Mathematica

Let f be a smooth function defined on a finite union U of open convex sets in a locally convex Lindelöf space E. If, for every x ∈ U, the restriction of f to a suitable neighbourhood of x admits a smooth extension to the whole of E, then the restriction of f to a union of convex sets that is strictly smaller than U also admits a smooth extension to the whole of E.

Extension of smooth functions in infinite dimensions II: manifolds

C. J. Atkin — 2002

Studia Mathematica

Let M be a separable C Finsler manifold of infinite dimension. Then it is proved, amongst other results, that under suitable conditions of local extensibility the germ of a C function, or of a C section of a vector bundle, on the union of a closed submanifold and a closed locally compact set in M, extends to a C function on the whole of M.

Page 1

Download Results (CSV)