The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Some weighted norm inequalities for a one-sided version of g * λ

L. de RosaC. Segovia — 2006

Studia Mathematica

We study the boundedness of the one-sided operator g λ , φ between the weighted spaces L p ( M ¯ w ) and L p ( w ) for every weight w. If λ = 2/p whenever 1 < p < 2, and in the case p = 1 for λ > 2, we prove the weak type of g λ , φ . For every λ > 1 and p = 2, or λ > 2/p and 1 < p < 2, the boundedness of this operator is obtained. For p > 2 and λ > 1, we obtain the boundedness of g λ , φ from L p ( ( M ¯ ) [ p / 2 ] + 1 w ) to L p ( w ) , where ( M ¯ ) k denotes the operator M¯ iterated k times.

Weighted norm estimates for the maximal operator of the Laguerre functions heat diffusion semigroup

R. MacíasC. SegoviaJ. L. Torrea — 2006

Studia Mathematica

We obtain weighted L p boundedness, with weights of the type y δ , δ > -1, for the maximal operator of the heat semigroup associated to the Laguerre functions, k α k , when the parameter α is greater than -1. It is proved that when -1 < α < 0, the maximal operator is of strong type (p,p) if p > 1 and 2(1+δ)/(2+α) < p < 2(1+δ)/(-α), and if α ≥ 0 it is of strong type for 1 < p ≤ ∞ and 2(1+δ)/(2+α) < p. The behavior at the end points of the intervals where there is strong type is studied...

Page 1

Download Results (CSV)