Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

On 1-dependent ramsey numbers for graphs

E.J. CockayneC.M. Mynhardt — 1999

Discussiones Mathematicae Graph Theory

A set X of vertices of a graph G is said to be 1-dependent if the subgraph of G induced by X has maximum degree one. The 1-dependent Ramsey number t₁(l,m) is the smallest integer n such that for any 2-edge colouring (R,B) of Kₙ, the spanning subgraph B of Kₙ has a 1-dependent set of size l or the subgraph R has a 1-dependent set of size m. The 2-edge colouring (R,B) is a t₁(l,m) Ramsey colouring of Kₙ if B (R, respectively) does not contain a 1-dependent set of size l (m, respectively); in this...

Domination, Eternal Domination, and Clique Covering

William F. KlostermeyerC.M. Mynhardt — 2015

Discussiones Mathematicae Graph Theory

Eternal and m-eternal domination are concerned with using mobile guards to protect a graph against infinite sequences of attacks at vertices. Eternal domination allows one guard to move per attack, whereas more than one guard may move per attack in the m-eternal domination model. Inequality chains consisting of the domination, eternal domination, m-eternal domination, independence, and clique covering numbers of graph are explored in this paper. Among other results, we characterize bipartite and...

An inequality chain of domination parameters for trees

E.J. CockayneO. FavaronJ. PuechC.M. Mynhardt — 1998

Discussiones Mathematicae Graph Theory

We prove that the smallest cardinality of a maximal packing in any tree is at most the cardinality of an R-annihilated set. As a corollary to this result we point out that a set of parameters of trees involving packing, perfect neighbourhood, R-annihilated, irredundant and dominating sets is totally ordered. The class of trees for which all these parameters are equal is described and we give an example of a tree in which most of them are distinct.

Page 1

Download Results (CSV)