The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 11 of 11

Showing per page

Order by Relevance | Title | Year of publication

Polynomial rings over Jacobson-Hilbert rings.

Carl Faith — 1989

Publicacions Matemàtiques

A ring R is (in Vámos' terminology) if every subdirectly irreducible factor ring R/I is self-injective. rings include Noetherian rings, Morita rings and almost maximal valuation rings ([V1]). In [F3] we raised the question of whether a polynomial ring R[x] over a ring R is again . In this paper we show this is not the case.

Rings with zero intersection property on annihilators: Zip rings.

Carl Faith — 1989

Publicacions Matemàtiques

Zelmanowitz [12] introduced the concept of ring, which we call right zip rings, with the defining properties below, which are equivalent: (ZIP 1) If the right anihilator X of a subset X of R is zero, then X1 = 0 for a finite subset X1 ⊆ X. (ZIP 2) If L is a left ideal and if L = 0, then L1

Addendum to .

Carl Faith — 1992

Publicacions Matemàtiques

We list some typos and minor correction that in no way affect the main results of (Publicacions Matemàtiques 33, 2 (1989), pp. 329-338), e.g., nothing stated in the abstract is affected.

Embedding torsionless modules in projectives.

Carl Faith — 1990

Publicacions Matemàtiques

In this paper we study a condition right FGTF on a ring R, namely when all finitely generated torsionless right R-modules embed in a free module. We show that for a von Neuman regular (VNR) ring R the condition is equivalent to every matrix ring R is a Baer ring; and this is right-left symmetric. Furthermore, for any Utumi VNR, this can be strengthened: R is FGTF iff R is self-injective.

Rings whose modules have maximal submodules.

Carl Faith — 1995

Publicacions Matemàtiques

A ring R is a right max ring if every right module M ≠ 0 has at least one maximal submodule. It suffices to check for maximal submodules of a single module and its submodules in order to test for a max ring; namely, any cogenerating module E of mod-R; also it suffices to check the submodules of the injective hull E(V) of each simple module V (Theorem 1). Another test is transfinite nilpotence of the radical of E in the sense that radα E = 0; equivalently,...

Addendum to .

Carl Faith — 1998

Publicacions Matemàtiques

Addendum to the author's article "Rings whose modules have maximal submodules", which appeared in Publicacions Matemàtiques 39, 1 (1995), 201-214.

Self-injective Von Neumann regular subrings and a theorem of Pere Menal.

Carl Faith — 1992

Publicacions Matemàtiques

This paper owes its origins to Pere Menal and his work on Von Neumann Regular (= VNR) rings, especially his work listed in the bibliography on when the tensor product K = A ⊗ B of two algebras over a field k are right self-injective (= SI) or VNR. Pere showed that then A and B both enjoy the same property, SI or VNR, and furthermore that either A and B are algebraic algebras over k (see [M]). This is connected with a lemma in the proof of the , namely a finite ring extension K = k[a, ..., a] is...

New characterizations of von Neumann regular rings and a conjecture of Shamsuddin.

Carl Faith — 1996

Publicacions Matemàtiques

A theorem of Utumi states that if R is a right self-injective ring such that every maximal ideal has nonzero annihilator, then R modulo the Jacobson radical J is a finite product of simple rings and is a von Neuman regular ring. We prove two theorems and a conjecture of Shamsuddin that characterize when R itself is a von Neumann ring, using a splitting theorem of the author on when the maximal regular ideal of a ring splits off.

Addendum to .

Carl Faith — 1990

Publicacions Matemàtiques

In the article appeared in this same journal, vol. 33, 1 (1989) pp. 85-97, some statements in the proof of Example 3.4B got scrambled.

Page 1

Download Results (CSV)