The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 29

Showing per page

Order by Relevance | Title | Year of publication

On the range of Carmichael's universal-exponent function

Florian LucaCarl Pomerance — 2014

Acta Arithmetica

Let λ denote Carmichael’s function, so λ(n) is the universal exponent for the multiplicative group modulo n. It is closely related to Euler’s φ-function, but we show here that the image of λ is much denser than the image of φ. In particular the number of λ-values to x exceeds x / ( l o g x ) . 36 for all large x, while for φ it is equal to x / ( l o g x ) 1 + o ( 1 ) , an old result of Erdős. We also improve on an earlier result of the first author and Friedlander giving an upper bound for the distribution of λ-values.

On some problems of Mąkowski-Schinzel and Erdős concerning the arithmetical functions ϕ and σ

Florian LucaCarl Pomerance — 2002

Colloquium Mathematicae

Let σ(n) denote the sum of positive divisors of the integer n, and let ϕ denote Euler's function, that is, ϕ(n) is the number of integers in the interval [1,n] that are relatively prime to n. It has been conjectured by Mąkowski and Schinzel that σ(ϕ(n))/n ≥ 1/2 for all n. We show that σ(ϕ(n))/n → ∞ on a set of numbers n of asymptotic density 1. In addition, we study the average order of σ(ϕ(n))/n as well as its range. We use similar methods to prove a conjecture of Erdős that ϕ(n-ϕ(n)) < ϕ(n)...

Page 1 Next

Download Results (CSV)