The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A generalization of the well-known Fibonacci sequence given by F₀ = 0, F₁ = 1 and for all n ≥ 0 is the k-generalized Fibonacci sequence whose first k terms are 0,..., 0, 1 and each term afterwards is the sum of the preceding k terms. For the Fibonacci sequence the formula holds for all n ≥ 0. In this paper, we show that there is no integer x ≥ 2 such that the sum of the xth powers of two consecutive k-generalized Fibonacci numbers is again a k-generalized Fibonacci number. This generalizes...
We consider the Tribonacci sequence given by T₀ = 0, T₁ = T₂ = 1 and for all n ≥ 0, and we find all triples of Tribonacci numbers which are multiplicatively dependent.
Download Results (CSV)