The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Multimemetic algorithms (MMAs) are a subclass of memetic algorithms in which memes are explicitly attached to genotypes and evolve alongside them. We analyze the propagation of memes in MMAs with a spatial structure. For this purpose we propose an idealized selecto-Lamarckian model that only features selection and local improvement, and study under which conditions good, high-potential memes can proliferate. We compare population models with panmictic and toroidal grid topologies. We show that the...
An evolutionary approach to the design of fuzzy logic controllers is presented in this paper. We propose the use of the genetic programming paradigm to evolve fuzzy rule-bases (internally represented as type-constrained syntactic trees). This model has been applied to the cart-centering problem, although it can be readily extended to other problems. The obtained results show that a good parameterization of the algorithm, and an appropriate evaluation function, can lead to near-optimal solutions.
Download Results (CSV)