The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
For two Banach spaces X and Y, we write if X embeds into Y and vice versa; then we say that X and Y have the same linear dimension. In this paper, we consider classes of Banach spaces with symmetric bases. We say that such a class ℱ has the Cantor-Bernstein property if for every X,Y ∈ ℱ the condition implies the respective bases (of X and Y) are equivalent, and hence the spaces X and Y are isomorphic. We prove (Theorems 3.1, 3.3, 3.5) that the class of Orlicz sequence spaces generated by regularly...
Download Results (CSV)