Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

The structure of nonseparable Banach spaces with uncountable unconditional bases.

Carlos FinolMarek Wójtowicz — 2005

RACSAM

Sea X un espacio de Banach con una base incondicional de Schauder no numerable, y sea Y un subespacio arbitrario no separable de X. Si X no contiene una copia isomorfa de l(J) con J no numerable entonces (1) la densidad de Y y la débil*-densidad de Y* son iguales, y (2) la bola unidad de X* es débil* sucesionalmente compacta. Además, (1) implica que Y contiene subconjuntos grandes formados por elementos disjuntos dos a dos, y una propiedad similar se verifica para las bases incondicionales no numerables...

Cantor-Bernstein theorems for Orlicz sequence spaces

Carlos E. FinolMarcos J. GonzálezMarek Wójtowicz — 2014

Banach Center Publications

For two Banach spaces X and Y, we write d i m ( X ) = d i m ( Y ) if X embeds into Y and vice versa; then we say that X and Y have the same linear dimension. In this paper, we consider classes of Banach spaces with symmetric bases. We say that such a class ℱ has the Cantor-Bernstein property if for every X,Y ∈ ℱ the condition d i m ( X ) = d i m ( Y ) implies the respective bases (of X and Y) are equivalent, and hence the spaces X and Y are isomorphic. We prove (Theorems 3.1, 3.3, 3.5) that the class of Orlicz sequence spaces generated by regularly...

Page 1

Download Results (CSV)