Elliptic curves with j-invariant equals 0 or 1728 over a finite prime field.
Let p be a prime number, p ≠ 2,3 and Fp the finite field with p elements. An elliptic curve E over Fp is a projective nonsingular curve of genus 1 defined over Fp. Each one of these curves has an isomorphic model given by an (Weierstrass) equation E: y2 = x3 + Ax + B, A,B ∈ Fp with D = 4A3 + 27B2 ≠ 0. The j-invariant of E is defined by j(E)...