We provide an explicit expression for the quantile of a mixture of two random variables. The result is useful for finding bounds on the Value-at-Risk of risky portfolios when only partial dependence information is available. This paper complements the work of [4].
Nelsen et al. [20] find bounds for bivariate distribution functions when there are constraints on the values of its quartiles. Tankov [25] generalizes this work by giving explicit expressions for the best upper and lower bounds for a bivariate copula when its values on a compact subset of [0; 1]2 are known. He shows that they are quasi-copulas and not necessarily copulas. Tankov [25] and Bernard et al. [3] both give sufficient conditions for these bounds to be copulas. In this note we give weaker...
Download Results (CSV)