The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Positivity of the density for the stochastic wave equation in two spatial dimensions

Mireille Chaleyat-MaurelMarta Sanz-Solé — 2003

ESAIM: Probability and Statistics

We consider the random vector u ( t , x ̲ ) = ( u ( t , x 1 ) , , u ( t , x d ) ) , where t > 0 , x 1 , , x d are distinct points of 2 and u denotes the stochastic process solution to a stochastic wave equation driven by a noise white in time and correlated in space. In a recent paper by Millet and Sanz–Solé [10], sufficient conditions are given ensuring existence and smoothness of density for u ( t , x ̲ ) . We study here the positivity of such density. Using techniques developped in [1] (see also [9]) based on Analysis on an abstract Wiener space, we characterize the set of...

Positivity of the density for the stochastic wave equation in two spatial dimensions

Mireille ChaleyatMaurelMarta Sanz–Solé — 2010

ESAIM: Probability and Statistics

We consider the random vector u ( t , x ̲ ) = ( u ( t , x 1 ) , , u ( t , x d ) ) , where are distinct points of 2 and denotes the stochastic process solution to a stochastic wave equation driven by a noise white in time and correlated in space. In a recent paper by Millet and Sanz–Solé [10], sufficient conditions are given ensuring existence and smoothness of density for u ( t , x ̲ ) . We study here the positivity of such density. Using techniques developped in [1] (see also [9]) based on Analysis on an abstract Wiener space, we characterize the set of...

Filtering the Wright-Fisher diffusion

Mireille Chaleyat-MaurelValentine Genon-Catalot — 2009

ESAIM: Probability and Statistics

We consider a Wright-Fisher diffusion whose current state cannot be observed directly. Instead, at times < < ..., the observations are such that, given the process , the random variables () are independent and the conditional distribution of only depends on . When this conditional distribution has a specific form, we prove that the model ((), 1) is a computable filter in the sense that all distributions involved in filtering, prediction...

Page 1

Download Results (CSV)