Cahn-Hilliard equation with terms of lower order and non-constant mobility.
We consider an initial-boundary problem for a sixth order nonlinear parabolic equation, which arises in oil-water-surfactant mixtures. Using Schauder type estimates and Campanato spaces, we prove the global existence of classical solutions for the problem in two space dimensions.
The author studies the convective Cahn-Hilliard equation. Some results on the existence of classical solutions and asymptotic behavior of solutions are established. The instability of the traveling waves is also discussed.
We consider an initial-boundary value problem for a fourth order degenerate parabolic equation. Under some assumptions on the initial value, we establish the existence of weak solutions by the discrete-time method. The asymptotic behavior and the finite speed of propagation of perturbations of solutions are also discussed.
This paper is concerned with the convective Cahn-Hilliard equation. We use a classical theorem on existence of a global attractor to derive that the convective Cahn-Hilliard equation possesses a global attractor on some subset of H².
Page 1